sigpy.mri.app.JsenseRecon¶
-
class
sigpy.mri.app.
JsenseRecon
(y, mps_ker_width=16, ksp_calib_width=24, lamda=0, device=<CPU Device>, comm=None, weights=None, coord=None, img_shape=None, grd_shape=None, max_iter=10, max_inner_iter=10, normalize=True, show_pbar=True)[source]¶ JSENSE reconstruction.
Considers the problem
\[\min_{l, r} \frac{1}{2} \| l \ast r - y \|_2^2 + \frac{\lambda}{2} (\| l \|_2^2 + \| r \|_2^2)\]where \(\ast\) is the convolution operator.
Parameters: - y (array) – k-space measurements.
- mps_ker_width (int) – sensitivity maps kernel width.
- ksp_calib_width (int) – k-space calibration width.
- lamda (float) – regularization parameter.
- device (Device) – device to perform reconstruction.
- weights (float or array) – weights for data consistency.
- coord (None or array) – coordinates.
- img_shape (None or list) – Image shape.
- grd_shape (None or list) – Shape of grid.
- max_iter (int) – Maximum number of iterations.
- max_inner_iter (int) – Maximum number of inner iterations.
References
Ying, L., & Sheng, J. (2007). Joint image reconstruction and sensitivity estimation in SENSE (JSENSE). Magnetic Resonance in Medicine, 57(6), 1196-1202.
Uecker, M., Hohage, T., Block, K. T., & Frahm, J. (2008). Image reconstruction by regularized nonlinear inversion- joint estimation of coil sensitivities and image content. Magnetic Resonance in Medicine, 60(#), 674-682.
-
__init__
(y, mps_ker_width=16, ksp_calib_width=24, lamda=0, device=<CPU Device>, comm=None, weights=None, coord=None, img_shape=None, grd_shape=None, max_iter=10, max_inner_iter=10, normalize=True, show_pbar=True)[source]¶ Initialize self. See help(type(self)) for accurate signature.
Methods
__init__
(y[, mps_ker_width, …])Initialize self. run
()Run the App.